
A comparison of some efficiency factors in photovoltaics

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1991 J. Phys.: Condens. Matter 3 6415

(http://iopscience.iop.org/0953-8984/3/33/018)

Download details:

IP Address: 171.66.16.147

The article was downloaded on 11/05/2010 at 12:28

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/3/33
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J .  Phys.: Condens. Matter 3 (1991) 6415-6424. Printed in the UK 

A comparison of some efficiency factors in photovoltaics 

P T Landsbergt, A De Vos: and P Baruch$ 
t Faculty ofMathemeticd Studies, Southampton University, Southampton SO9 5NH, 
UK 
t Laboratorium VOOI Elektronilia en bleettechniek, State University of Gent, Belgium 
5 G r o u p  de Physique des Solides, associi au CRNS, Universiti Paris 7 ,  France 

Received 18 March 1991 

Abst rac t .  Shoddey and Queisser, in their fundamental paper, defined an ‘ultimate 
efficiency’ nult, as the ratio of electrical output power (assuming the voltage factor 
and the fill factor to be unity) to the radiative input power (asstuning maximum light 
concentration) in an ided solar cell. 

We herr discuss this efficiency factor for a general density of states g(z), where 
z = hu/kTp and Tp is the pump temperature. Its maximum with respect to variations 
of the bandgap Eg occurs a t  a certain value of Egr say Ego. yielding n.~t(x~o). where 
z,o E E@ f kTp. The efficiency 7 of a simple solar cell in the presence of surroundings 
at temperature T, isproportional ton(Tp,Ta) J”m{[l/(exp(z)-l)]-[l/(exp(((x- 
v) /T.)Tp)  - l)]}g(r) d r .  Its maximum with respect to zg and v is nmax(Tp,Ts). W e  
show liere that the Shockley-Queisser eficiency is the same as nmnx. provided the 
ambient is set at  absolute zero of temperature: q.lt(x@) = nmaX(TprO). 

Comments are also made on: (i) the passibility of several maxima of nulr(zgo) 
for certain appropriately chosen g ( z ) ;  and (ii) its dependence on the number of 
dimensions n = 1,2,3,4,. . .,CO: 29,39,44,48,. . . ,loo%, ifg(z) is chosen as if due to 
an n-dimensional cube. 

=I 

1. Introduction 

A widely used and cited method for obtaining an approximabe estimate for solar 
energy conversion is associated with the excellent paper by Shockley and Queisser [l]. 
Nonetheless we have to point out again, as was done earlier [2], that  the method was 
employed six years earlier by ’Itivicli and Flinn [3], for which they have not received 
the credit that might have been expected. 

In the present paper we make three points: 

(i) The approximate procedure of Trivich, Flinn, Shockley and Queisser (TFSQ) 
gives the results of more accurate calculations in the limit when the ambient and cell 
temperature (assumed to be equal a t  T,) is approxitmted by 0 I(. As in the Carnot 
theory, this gives the highest efficiency of the whole range of efficiencies generated by 
all possible cell or ambient temperatures (T,) lying below the pump or sun temperature 

(ii) The TFSQ result (here equation (3)) can yield several maxima for certain 
incident spectra g(z) .  The highest of these is then the true (global) maximum efficiency 
furnished by this method. 

(iii) The standard TFSQ result is valid for radiation in three dimensions. The 
present paper gives a generalization for an arbitrary number of dimensions. 
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2. The TFSQ argument and photovoltaics 

The usual TFSQ argument for the maximum efficiency of a photovoltaic device goes as 
follows. Let I = hu/kTp, where Tp is the pump temperature, e.g. the temperature of 
solar radiation received on earth. Let g ( r ) d r  be the number of photon states between 
I and I + dz ,  multiplied by a constant 50 that  g(z) represents a number flux. Let zg 
be the energy gap Eg divided by kTp. Further, let 

f(z) = I/(exp(z) - 1) (1) 

be the equilibrium photon number in one radiation mode. Then we assume that the 
pump surrounds the cell and that each absorbed photon contributes the energy gap 
to the pliotovoltaic energy output, The so-called ‘ultimate’ efficiency of the device is 
then 

where we have divided by 

i.e. the input energy flux aP divided by kTp: 

D = aP/kTp 

We would like to warn the reader that the name ‘ultimate efficiency’ is somewhat 
nusleading, as it takes into account the first law of thermodynamics, but not the 
second law. We prefer to call it an eficiency factor instead of an eficiency. It  only 
deserves the name efieiency, if the other eficiency factors, i.e. voltage factor and 
fill factor in present-day terminology (the latter being called impedance matching 
factor by Shockley and Queisser (SQ), the former, i.e. qVo,-/Eg, having not received 
a particular name from SQ) are equal to unity. 

Since qult(0) = 0 and qult(+cu) = 0, a maximum ultimate efficiency exists at  
I = zgo, say, such that 0 < zg0 < +ca. One finds that rgo must divide the function 
gfz) f ( t )  into two parts, so that the rectangle rgog(z ,,)f(zgo) to the left of sg = zg0 
has the same area as that  found under the curve to t i e  right of zgo, i.e. 

In fact (3) is an idealization of the general equation 

m 

rg04(2.,o)s(zgo)f(+go) = 1 q(z)g(x)f(r) d z  

where q(z) is the quantum efficiency of the photovoltaic device, i.e. absorption effi- 
ciency times collection efficiency. Equation (3) is deduced from this general condition 
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by putting q(z) equal to zero beneath the bandgap and equal to unity above the 
bandgap. 

Figure 1 shows the classical spectrum g(z)  f(z), where g ( z )  is given by the tradi- 
tional expression 

(4) 
2 g(x) = A z  

where A is a constant. The Corresponding curve qUlt(zg) is also displayed. It shows 
the well known maximum of 44% at xg equal to zgo = 2.2. 

As pointed out in the introduction, equation (3) can yield several maxima zgo. 
For example, we can replace (4) by 

which has the same behaviour as (4) for both small and large z: 

g(z) = Az2 for z <E: < 
and 

g(z) = As2  for z > (. 
The corresponding spectrum g(z) f(z) can be interpreted as a black-body-like spec- 
trum with an attenuation band around z = <. Now two maximaoccur in the qUlt(zg) 
curve (provided E is chosen sufficiently large). What is more-for the particular value 
5 = 3.17 both maxima are equal. This is illustrated in figure 2 for xgo and zbo,. 

As pointed out by Dr R Forster (Humholdt Universitat, Berlin), the function 

g(z )  f (2) = AI-' 
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w v  Figure 2. A possible functiong(z)f(z) and 
O l  **U $0 the anresponding function nuit (28). 

even satisfies the condition (3) at every point of the curve, suggesting an ultimate 
efficiency independent of bandgap. Since D diverges in this case, this example is, 
however, not physically meaningful. 

Substituting (3) into (2), the maximum efficiency is 

'l"a("go) = ~:O!?(Z&O)f(~@)/D (5) 

where zgo has to be substituted from the solution of (3). 
In order to compare this approximate, but rather general, treatment with a more 

exact one, we shall consider the case of one-dimensional photovoltaics, where the exact 
calculation can be readily made analytically. One finds [4] for the exact value 

of relevance in the framework of noise in optic fibers and in electrical networks. On 
the other hand the fact that g ( z )  = A, means that (3) becomes 

and hence 

zgo = log(2). 

Substitution into (5) yields 
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One sees from (6) and (7) that 

%"fJ) = ' l " l t ( ~ & O ) .  ( 8 )  

Formula (8) can be interpreted as follows: in the limit for E going to 0 K,  the 
eficiency qmm becomes equal to the eficiency factor vult. This is easily understood, 
by remarking that for = 0, the two other efficiency factors, i.e. the voltage factor 
qV/E8,and the fill factor (W),,,~/IscVoc, are both unity. Here SC and OC refer to 
short-circuit and open-circuit conditions, respectively. 

We now show that the result (8) has more general validity. For this we need to 
obtain an expression which has the general validity of (5) for the left-hand side of (8). 

3. The general efficiency 

In'order to estimate the efficiency of the energy conversion in photovoltaics, we need 
an expression for the radiative energy flux aP, which arrives from the pump. For 
simplicity we again assume that the pump surrounds the converter. If V denotes the 
voltagegenerated across the device, the current density j(V) equals p times the number 
flux of electron-hole pairs which are generated by the incident radiation, reduced by 
the number flux ofelectron-hole pairs which recombine in order to produce the thermal 
emission from the cell. This is 

where U equals qV/kTp. The expression for the second term has been discussed in 
various references [5-81. Thus the energy flux output is VI(V), and therefore the 
efficiency is 

This is the required expression. 
MaKimking first with respect to zg, i.e. 

leads to a remarkably simple optimum value of zg, say zg1, given by 

Z&l = v/(l - T,/Tp). 

The efficiency, optimized with respect to zs, is 
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Optimization with respect to U = (1 - T,/T,)z,, is needed next. Thus 
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dq/drB, = 0 

is needed, and gives 

This equation generalizes expression (3). The condition has the form 

where the second term in the square brackets of (11) has been denoted by h ( z ) .  Since 
z > zgl, h(r) vanishes in the limit Ts + 0. In this limit the condition for maximum 
efficiency is precisely that which would be derived for the maximum of the ultimate 
efficiency (2) with respect to z The optimum value of y is therefore the value which 
has been denoted by zgo, and 61 T, -t 0 

where zgo is given by (3). This means that (8) has been generalized to 

qmar = q u ~ t ( z g ~ ) ,  (13) 

If one takes account of the limited solid angle subtended by the sun at the earth the 
argument is not significantly altered. It can be taken care of by an additional constant 
factor in equations (2), ( 5 ) ,  (6) and (7) and in the first terms only of equations (9)- 
(12). The radiation from the rest of the surroundings should then also be taken into 
account (see, for instance [9-Ill), but it is often negligible. 

4. T h e  dependence of the TFsQ optimum gap on the  number of dimensions 

The previous discussion leads to the following academic question concerning photo- 
voltaics in n dimensions. In this case f(z) is still given by (3), but 

g(z) = A,+”-’ 

a generalization of the traditional 

g(z) = Asz 2 . 

Here A, is a constant arising from the number of modes of radiation in n dimensions. 
Although the explicit value of A, can be calculated [12], we do not need it here, as it 
cancels out of the relevant equations (2) and (10). 
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We consider equation (2) maximized with respect to ag. If the symbol a is used 
for a+, then 

This is the maximized ultimate efficiency for the case of negligible non-radiative r e  
combination, incident black-body radiation, Ts = 0 and n dimensions, when a is a 
solution of 

a" m ="-' da 
exP(U) - 1 

For the same conditions the exact efficiency (10) gives 

which is the same as (14) provided pV is taken as the energy gap Es and zs is replaced 
by ego. But this is irrelevant; the point of section 3 was to show that the mazimum 
of (16) agrees with the result of (14) and (15) (as expressed in (13)). For n = 1 the 
whole matter is clear and has been summarized in section 2. We now ask for the value 
of Q, as given by (15), in the limit of large n. 

Substitution of z = Z / Q  converts (15) to 

1 - m p - 1  dz 

Writing 

~(z) = (n - 1) log(z) - az 

and 

s(2) = 1/(1- exp(-az)) 

condition (15) is 

1 
=p(Q) - 1' 

lm exp[r(t)]s(z) d t  = 

The Laplace approximation of the integral is 

where b denotes the value o f t  for which r ( t )  is maximum, which must lie in the range 
of integration. In the present case 

b = (n  - l)/Q 
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such that 
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r(b) = (n - l)pog(n - 1) - log(a) - 11 r"(b) = -a2/(. - 1) 

and 

1 
1 - expI-(n - I)] ' s(b) = 

Substituting (19) in (18) yields the following value of the integral: 

(2a)l/2 exp[(n - i)log(n - 1) - (n - l)(log(a) + I)] 
a 1 - exp[-(n - I)] 

Substitution into condition (17) and subsequent inversion of both sides gives the fol- 
lowing equation for a: 

a 1 - exp[-(n - 1) ] 
exp(a) = - $ 1  

(2a)1/2 exp[ (n  - a)  log(n - lj - (F- I)(log(a) + I)] 
Taking logarithms and using expansions of the type log( 1 t e) = c - $e* + +@ when 
e is small, the equation for a turns out to be 

(20) 
a 

a/n - log (--) = 1 t (~/zn)log(n) + c 
where 

1 1 
n3 2n n n 

log(2a) - - log[l - exp(-a)] - - log[l - exp(-(n + I))] c=- - -  

can be neglected. The solution of (20) is 

I 1  

a=,--. (21) 

To see the last step, observe from (20) that a/n % 1 for large R, so that one can put 

afn = 1 t r(n) 

with $(n) < 1. Equation (20) is then 

e - log(1 + 6 )  s (1/2n)log(n) 

or 

?(n) = (1/n) log(n). 

and one finds (21). 
Numerical calculations (table 1) confirm the approximation for large n. Thus the 

method of TFSQ yields an optimum bandgap Eg which increases from log(2) kTp for 
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Table 1. Check of result (21). 
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n 

1 
2 
3 
4 
10 
100 
IMH) 

- 

1 06 

a/= from (21) 

1.000 0.693 
0.411 0.718 
0.395 0.723 
0.411 0.725 
0.520 0.729 
0.785 0.840 
0.917 0.930 
0.996 0.997 

a/= numwicdlyi" (15) 

n = 1 through the well known value of 2.17 kTP for n = 3 to the asymptotic value 
n kT, for large n. 

Applying this Laplace approximation to (14) also finally yields 

Again numerical calculations (table 2) confirm the asymptotic behaviour for large n. 
We see how qua increases from 6[log(2)/rI2 for n = 1 through the well known TFSQ 
value of 44.0% for n = 3 to the asymptotic value 1 for large n. 

Table 2. check of result (22). 

n %IC(") from (22) n.~t(a) mmericdlr from (14)-(15) 

1 1 .Ooo 0.292 
2 0.411 0.385 
3 0.395 0.440 
4 0.411 0.477 
10 0.520 0.580 
100 0.785 0.799 
IMx) 0.917 0.919 
106 0.996 0.996 

Figure 3 shows some ultimate efficiencie curves qult(zs). We see how a E cso as 
well as qult(a) increase with increasing n. 

Figure 3. Some functions vult (z8),  for difIermt number of dimensions. 
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5. Conclusion 

The efficiency of a solar cell has here been discussed from two points of view: 

(i) the mealled ultimate efficiency of SQ; and 
(ii) a fundamental formulation of the efficiency. 

The latter e5ciency (ii) is always decreased by the back-radiation from the cell 
towards the surrounding space. If this term is reduced to zero, by assuming that the 
cell temperature is Zero, then the maxima of (i) and (ii) with respect to the energy 
gap of the semiconductor are the same. This result holds for the general density of 
radiation modes. 

The possibility of several maxima with respect to Eg in case (i) is exhibited by 
example. The increase of efficiency under (i) with dimensionality is also traced in 
detail. 
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